link

May 26, Thursday
12:00 – 14:00

On Lattices, Learning with Errors, Random Linear Codes, and Cryptography
Computer Science seminar
Lecturer : Dr. Oded Regev
Lecturer homepage : http://www.cs.tau.ac.il/~odedr/
Affiliation : Dept. of CS, Tel-Aviv University
Location : -101/58
Host : Dr. Kobbi Nisim
Our main result is a reduction from worst-case lattice problems such as SVP and SIVP to a certain learning problem. This learning problem is a natural extension of the `learning from parity with error' problem to higher moduli. It can also be viewed as the problem of decoding from a random linear code. This, we believe, gives a strong indication that these problems are hard. Our reduction, however, is quantum. Hence, an efficient solution to the learning problem implies a _quantum_ algorithm for SVP and SIVP.

A main open question is whether this reduction can be made classical.

Using the main result, we obtain a public-key cryptosystem whose hardness is based on the worst-case quantum hardness of SVP and SIVP. Previous lattice-based public-key cryptosystems such as the one by Ajtai and Dwork were only based on unique-SVP, a special case of SVP. The new cryptosystem is much more efficient than previous cryptosystems: the public key is of size $\tilde{O}(n)$ and encrypting a message increases its size by $\tilde{O}(n)$ (in previous cryptosystems these values are $\tilde{O}(n^4)$ and $\tilde{O}(n^2)$, respectively).

Oded Regev is a senior lecturer in Tel Aviv University. He received his Ph.D. from Tel Aviv University in 2001, and was a postdoc at the Institute for Advanced Study, Princeton and U.C. Berkeley.