June 21, Tuesday
12:00 – 14:00
We stress however, that this does not mean that there exists one fixed samplable distribution that is hard for all probabilistic polynomial time algorithms, which is a pre-requisite assumption needed for OWF and cryptography (even if not a sufficient assumption). We elaborate on the difference between these two notions. Nevertheless, we do show that there is a fixed distribution on instances of NP-complete languages, that is samplable in quasi-polynomial time and is hard for all probabilistic polynomial time algorithms (unless NP is easy in the worst-case).
Our results are based on the following lemma that may be of independent interest: Given the description of an efficient (probabilistic) algorithm that fails to solve SAT in the worst-case, we can efficiently generate at most three Boolean formulas (of increasing lengths) such that the algorithm errs on at least one of them.
Joint work with Dan Gutfreund and Ronen Shaltiel.